Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Comput Sci Eng ; 23(1): 7-16, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1165634

ABSTRACT

The urgent search for drugs to combat SARS-CoV-2 has included the use of supercomputers. The use of general-purpose graphical processing units (GPUs), massive parallelism, and new software for high-performance computing (HPC) has allowed researchers to search the vast chemical space of potential drugs faster than ever before. We developed a new drug discovery pipeline using the Summit supercomputer at Oak Ridge National Laboratory to help pioneer this effort, with new platforms that incorporate GPU-accelerated simulation and allow for the virtual screening of billions of potential drug compounds in days compared to weeks or months for their ability to inhibit SARS-COV-2 proteins. This effort will accelerate the process of developing drugs to combat the current COVID-19 pandemic and other diseases.

2.
The International Journal of High Performance Computing Applications ; : 10943420211001565, 2021.
Article in English | Sage | ID: covidwho-1153941

ABSTRACT

Time-to-solution for structure-based screening of massive chemical databases for COVID-19 drug discovery has been decreased by an order of magnitude, and a virtual laboratory has been deployed at scale on up to 27,612 GPUs on the Summit supercomputer, allowing an average molecular docking of 19,028 compounds per second. Over one billion compounds were docked to two SARS-CoV-2 protein structures with full optimization of ligand position and 20 poses per docking, each in under 24 hours. GPU acceleration and high-throughput optimizations of the docking program produced 350? mean speedup over the CPU version (50? speedup per node). GPU acceleration of both feature calculation for machine-learning based scoring and distributed database queries reduced processing of the 2.4 TB output by orders of magnitude. The resulting 50? speedup for the full pipeline reduces an initial 43 day runtime to 21 hours per protein for providing high-scoring compounds to experimental collaborators for validation assays.

SELECTION OF CITATIONS
SEARCH DETAIL